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Real-time Motion Tracking from a Mobile Robot
Boyoon Jung, Student Member, IEEE, Gaurav S. Sukhatme, Member, IEEE

Abstract— A mobile robot needs to perceive the motions of
external objects to perform tasks successfully in a dynamic
environment. We propose a set of algorithms for multiple motion
tracking from a mobile robot equipped with a monocular camera
and a laser rangefinder. The key challenges are 1. to compensate
the ego-motion of the robot for external motion detection, and 2.
to cope with transient and structural noise for robust motion
tracking. In our algorithms, the robot ego-motion is directly
estimated using corresponding feature sets in two consecutive
images, and the position and velocity of a moving object is
estimated in image space using multiple particle filters. The
estimates are fused with the depth information from the laser
rangefinder to estimate the partial 3D position. The proposed
algorithms have been tested with various configurations in
outdoor environments. The algorithms were deployed on three
different platforms; it was shown that various type of ego-motion
were successfully eliminated and the particle filter was able to
track motions robustly. The multiple target tracking algorithm
was tested for different types of motions, and it was shown that
our multiple filter approach is effective and robust. The tracking
algorithm was integrated with a robot control loop, and its real-
time capability was demonstrated.

Index Terms— mobile robot, motion tracking, ego-motion com-
pensation, particle filter.

I. INTRODUCTION

MOTION TRACKING is a fundamental capability that
a mobile robot must have in order to operate in a

dynamic environment. Moving objects (eg., people) are often
subjects for a robot to interact with, and in other contexts
(eg., traffic) they could be potentially more dangerous for safe
navigation compared to stationary objects. Further, capabilities
like localization and mapping critically depend on separating
moving objects from static ones. Finally motion is the most
critical feature to track for many surveillance or security appli-
cations. For instance, a building monitoring system can watch
for a burglar at night by detecting motion, or an autonomous
rescue vehicle can search for victims of natural disaster by
sensing motion. Clearly, robust motion detection and tracking
are key enablers for many mobile robot applications.

The motion tracking problem from a mobile robot is illus-
trated in Figure 1. There are multiple moving objects in the
vicinity of a mobile robot. Measurements from sensors on-
board the robot are contaminated with noise, and an estimation
process is required to compute the positions and velocities
of the moving objects in the robot’s local coordinate system.
In the variant of the problem studied here, we require real-
time estimates without prior knowledge about the number of
moving objects, the motion model of objects, or the structure
of the environment. As an additional restriction, a populated,
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Fig. 1. Motion tracking from a mobile robot: The problem is to estimate
the positions and velocities of target motions in the robot’s local coordinate
system.

unstructured outdoor environment is assumed. Moving object
detection in a structured indoor environment has been rela-
tively well studied [1], [2], [3]. In an indoor environment,
moving objects are often clearly distinguishable from the rest
of the environment due to distinct environmental structures
(eg. straight and perpendicular walls). In contrast, an outdoor
environment contains objects of irregular shapes, and it is
challenging to segment moving objects from the background.
In addition, outdoor environments contain diverse motions
(varying speeds, frequencies etc.).

There are two main challenges in the motion tracking
problem. First, there are two independent motions involved
- the ego-motion of the mobile robot and the external motions
of moving objects. Since these two motions appear blended
in the sensor data, the ego-motion of the robot needs to be
eliminated so that the remaining motions, which are due to
moving objects, can be detected. Second, there are various
types of noise added at various stages. For example, real
outdoor images are contaminated by various noise sources
including poor lighting conditions, camera distortion, unstruc-
tured and changing shape of objects, etc. Perfect ego-motion
compensation is rarely achievable, thus it adds another type
of uncertainty to the system. Some of these noise terms are
transient and some of them are constant over time.

Our approach to the problem is to design a simple and
fast ego-motion compensation algorithm in the pre-processing
stage for real-time performance, and to develop a probabilistic
filter in the post-processing stage for uncertainty and noise
handling. Since the sequence of camera images contains rich
information of object motion, a monocular camera is utilized
for motion detection and tracking. A laser rangefinder provides
depth information of image pixels for partial 3D position
estimation. Figure 2 shows the processing sequence of our
motion tracking system. Frame differencing, which compares
two consecutive images and finds motions based on the
difference, is exploited for motion detection. However, when
the camera moves (eg. when it is mounted on a mobile robot),
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Fig. 2. Processing sequence for motion tracking from a mobile robot: A
monocular camera is utilized for motion detection and tracking in image space,
and the result is fused with laser scans for motion estimation in 2.5 dimension.

straightforward differencing is not applicable because a big
difference is generated by the motion of the camera even
when nothing moves in the environment. Therefore, the ego-
motion of the camera is compensated before comparing the
previous image (Image(t−1)) with the current one (Image(t)).
Assuming that the ego-motion compensation is perfect, the
difference image would still contain structured noise on the
boundaries of objects because of the lack of depth information
from a monocular image. We use a probabilistic model to filter
such noise out and to perform robust detection and tracking.
The motions of moving objects are modeled using a Bayesian
framework, and their probability distribution in image space
is estimated by applying perception and motion models. Once
the positions and velocities of moving objects are estimated
in 2D image space, the information is combined with the
partial depth information from a laser rangefinder in order to
construct a 3D motion model. By projecting range values into
an image space, the image pixels at the same height as the
laser rangefinder will have depth information.

The performance of the proposed system has been analyzed
in three steps. First, the robustness of the motion tracking
algorithms has been tested on various robot platforms that
have unique characteristics in terms of their ego-motions. The
experimental results show that our motion tracking system
is able to cope with various types of ego-motions and the
particle filter produces robust estimation. Second, a multiple
particle filter approach for multiple motion tracking has been
validated using various scenarios, and the experimental results
show that the multiple filter approach tracks all motions
successfully for the cases that a single filter approach fails.
Lastly, the proposed tracking system has been integrated with
a robot control loop, and its robustness and real-time capability
have been examined. The experiments demonstrate that the
motion tracking system is robust enough that the system is
not disturbed by other moving objects once it starts to track
an object.

The rest of the paper is organized as follows. Section II
summarizes the related work on this topic. The detailed ego-
motion compensation algorithm is given in Section III, and the
design of the probabilistic filter is explained in Section IV.
Section V describes how to fuse the estimation result in
image space with laser rangefinder data, and Section VI
reports the experimental results and analyzes the performance
of the proposed algorithms. The current status and possible
improvements are discussed in Section VII.

II. RELATED WORK

The computer vision community has proposed various meth-
ods to stabilize camera motions by tracking features [4], [5],
[6] and computing optical flow [7], [8], [9]. These approaches
focus on how to estimate the transformation (homography)
between two image coordinate systems. However, the motions
of moving objects are typically not considered, which leads to
poor estimation.

Other approaches that extend these methods for motion
tracking using a pan/tilt camera include those in [10], [11],
[12]. However, in these cases the camera motion was limited to
translation or rotation. When a camera is mounted on a mobile
robot, the main motion of the camera is a forward/backward
movement, which makes the problem different from that of a
pan/tilt camera.

There is other research on tracking from a mobile platform
with similar motions. [13] tracks a single object in forward-
looking infrared (FLIR) imagery taken from an airborne,
moving platform, and [14], [15] track cars in front using a
camera mounted on a vehicle driven on a paved road.

Once motion has been identified, objects in the scene
need to be tracked. Work focusing on robust multiple target
tracking using probabilistic filters includes [2] which uses a
particle filter to track people indoors (corridors) using a laser
rangefinder, and [16] which also uses a particle filter to track
multiple objects using a stationary camera. A Kalman filter
was used in [17] to detect and track human activity with the
combination of a static camera and a moving camera.

III. EGO-MOTION COMPENSATION

The ego-motion compensation is a coordinate conversion
procedure. Assume that a sensory data acquisition process
is as follows: (1) one set of data D is acquired at time t
when a robot is located at (x, y, α), (2) the robot (and the
sensors) moves to (x + ∆x, y + ∆y, α + ∆α) for ∆t, and
(3) another set of data D′ is acquired at time t + ∆t. In
this case, the data D and D′ cannot be compared directly
because they are captured in different coordinate systems.
Therefore, the data D should be compensated for the ego-
motion (∆x, ∆y, ∆α), which means that the data D should be
transformed as if it were acquired when a robot was located
at (x + ∆x, y + ∆y, α + ∆α). The goal of the ego-motion
compensation step is to compute this transformation T . The
transformation can be estimated directly or indirectly.

The indirect method is to estimate a robot pose each time
using various sensors (eg. gyroscope, accelerometer, odometer
and/or GPS), and compute the ego-motion (∆x, ∆y, ∆α) first.
Once the ego-motion is computed, the transformation T can
be computed based on the geometric properties of sensors.
The pose estimation technique has been well studied [18],
[19], [20], and the indirect method may be effective when
the transformation error is linear in the ego-motion estimation
error. However, when a projection operation is involved in
the transformation, as in our case, the indirect method is not
appropriate since a tiny angular error in the motion estimation
step would induce a huge position error after being projected
into the data space. Therefore, we choose the direct method.
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The direct method is to infer the transformation T by
corresponding salient features in the data set D to those in the
data set D′. The feature selection and matching techniques for
various types of sensors has been studied by [4], [7], [21], [22],
[23]. Since the transformation is estimated using the corre-
sponding feature set directly, the quality of the transformation
relies on the quality of selected features from the data sets.
Unfortunately, in our case, the quality of the features is poor
due to independently moving objects in image data. Therefore,
a transformation model and outlier detection algorithm needs
to be designed so that the estimated transformation is not
sensitive to those object motions.

A. Feature Selection and Tracking

We adopt the KLT (Kanade-Lucas-Tomasi) feature tracking
algorithm introduced in [4], [7], [24], [25] to select and
correspond features between two images. The KLT algorithm
has become a standard technique for feature-based computer
vision algorithms. For completeness, we describe the algo-
rithms concisely here.

Given two consecutive images (the previous image I t−1

and the current I t), a set of features is selected from the
image It−1, and a corresponding feature set is constructed
by tracking the same features on the image I t.

For feature selection, a small search window runs over the
whole image I t−1 to check if the window contains a reliably
trackable feature. For each search window,

1) Compute the boundary information,
[

∂I(x,y)
∂x

∂I(x,y)
∂y

]T

2) Compute the covariance matrix of the boundary pixels
3) Compute two eigenvalues (λ1, λ2) of the covariance

matrix
4) Select a search window such that min(λ1, λ2) > θ

Search windows with two small eigenvalues contain no pat-
tern, and those with one small eigenvalue and one big eigen-
value contain unidirectional patterns, which are not easy to
track. Only search windows with two big eigenvalues are
selected for tracking because they contain a perpendicular
pattern (eg. corners) or divergent textures (eg. leaves) which
are relatively unique enough to be tracked. The feature se-
lection algorithm runs on the image I t−1, and generates a
set of features F t−1. Figure 3 shows the features selected
from indoor and outdoor images. In the indoor image, most
of the selected features are the corners of objects, like desks,
computers, and bookshelves. In the outdoor image, some
corners of bricks and cars, leaves and grass that have complex
textures were selected as features.

Once the feature set F t−1 is selected, the features are
tracked on the subsequent image I t and the set of tracked
features F t is generated. For efficiency, the search range was
limited to a small constant distance (assuming a bounded robot
speed). Figure 4 shows the robustness of the tracking method.
Figure 4 (a) shows the features selected from the image I t,
and Figure 4 (b) shows the same features tracked over 30
frames on the image I t+30, which is an image captured 3
seconds later. The erroneous features on image boundaries are
eliminated for subsequent processing.

(a) indoor features

(b) outdoor features

Fig. 3. Salient features (filled circles) selected for tracking: Primarily
perpendicular patterns (eg. corners) or divergent textures (eg. leaves) are
selected.

(a) features at time t

(b) tracked features at time t + 30

Fig. 4. Feature tracking: (a) shows salient features selected, and (b) shows
the same features tracked over 30 frames (3 seconds).
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B. Transformation Estimation
Once the correspondence F =<F t−1, F t > is known, the

ego-motion of the camera can be estimated using a transfor-
mation model and an optimization method. We have studied
three different models: affine model, bilinear model, and a
pseudo-perspective model.

Affine Model :
[

f t
x

f t
y

]

=

[

a0 f t−1
x + a1 f t−1

y + a2

a3 f t−1
x + a4 f t−1

y + a5

]

Bilinear Model :
[

f t
x

f t
y

]

=

[

a0 f t−1
x + a1 f t−1

y + a2 + a3 f t−1
x f t−1

y

a4 f t−1
x + a5 f t−1

y + a6 + a7 f t−1
x f t−1

y

]

Pseudo-perspective Model :

[

f t
x

f t
y

]

=











a0 f t−1
x + a1 f t−1

y + a2

+ a3 f t−1
x

2
+ a4 f t−1

x f t−1
y

a5 f t−1
x + a6 f t−1

y + a7

+ a4 f t−1
x f t−1

y + a3 f t−1
y

2











When the interval between consecutive images is very small,
most ego-motions of the camera can be estimated using an
affine model, which can cover translation, rotation, shearing,
and scaling motions. However, when the interval is long, the
camera motion in the interval cannot be captured by a simple
linear model. For example, when the robot moves forward,
the features in the image center move slower that those near
the image boundary, which is a projection operation, not a
simple scaling. Therefore, a nonlinear transformation model
is required for those cases. On the other hand, an over-fitting
problem may be caused when a model is highly nonlinear,
especially when some of the selected features are associated
with moving objects (outliers). There is clearly a trade-off
between a simple, linear model and a highly nonlinear model,
and it needs more empirical research for the best selection.
We used a bilinear model for the experiments reported in this
paper.

When the transformation from the image I t−1 to the image
It is defined as T t

t−1, the cost function for least square
optimization is defined as:

J =
1

2

N
∑

i=1

{

f t
i − T t

t−1

(

f t−1
i

)}2
(1)

where N is the number of features. The model parameters
for ego-motion compensation are estimated by minimizing the
cost. However, as mentioned before, some of the features are
associated with moving objects, which lead to the inference of
an inaccurate transformation. Those features (outliers) should
be eliminated from the feature set before the final transfor-
mation is computed. The model parameter estimation is thus
performed using the following two-step procedure:

1) compute the initial estimate T0 using the full feature set
F .

2) partition the feature set F into two subsets Fin and Fout

as:
{

fi ∈ Fin if |f t
i − T0

t
t−1(f

t−1
i )| < ε

fi ∈ Fout otherwise
(2)

Fig. 5. Outlier feature detection: Outliers are marked with filled circles, and
inliers are marked with empty circles.

3) re-compute the final estimate T using the subset Fin

only.
Figure 5 shows the partitioned feature sets: Fin is marked with
empty circles, and Fout is marked with filled circles. Note
that all features associated with the pedestrian are detected as
outliers. It is assumed for outlier detection that the portion of
moving objects in the images is relatively smaller compared
to the background; the features which do not agree with the
main motion are considered as outliers. This assumption will
break when the moving objects are very close to the camera.
However, most of the time, these objects pass by the camera
in a short period (leading to transient errors), and a high-level
probabilistic filter is able to deal with the errors without total
failure.

C. Frame Differencing

The image It−1 is converted using the transformation model
before being compared to the image I t in order to eliminate
the effect of the camera ego-motion. For each pixel (x, y):

Ic(x, y) = It−1
(

T t
t−1

−1
(x, y)

)

(3)

Figure 6 (c) shows the compensated image of Figure 6 (a); the
translational and forward motions of the camera were clearly
eliminated. The valid region < of the transformed image is
smaller than that of the original image because some pixel
values on the border are not available in the original image
It−1. The invalid region in Figure 6 (c) is filled black. The
difference image between two consecutive images is computed
using the compensated image:

Id(x, y) =

{

| (Ic(x, y) − It(x, y)) | if (x, y) ∈ <

0 otherwise
(4)

Figure 7 compares the results of two cases: frame differencing
without ego-motion compensation (Figure 7 (a)) and with ego-
motion compensation (Figure 7 (b)). The results show that
the ego-motion of the camera is decomposed and eliminated
from image sequences. The full description of the frame
differencing process is given in Algorithm 1.

IV. MOTION DETECTION IN 2D IMAGE SPACE

The Frame Differencing step in Figure 2 generates the
sequence of difference images, I0

d , I1
d , · · · , It

d, whose pixel
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(a) Image at time t − 1 (b) Image at time t

(c) Compensated image of (a)

Fig. 6. Image Transformation: (c) is the transformed image of (a) into (b) coordinates. The valid region of the compensated image is smaller than that of
the original image due to the absence of data on the border.

(a) difference without compensation

(b) difference with compensation

Fig. 7. Results of frame differencing: (b) shows that the ego-motion of a
camera was decomposed and eliminated from image sequences.

values represent the amount of motion occurred in the position.
However, as described earlier, the difference images contain
two different types of errors. There are transient errors caused
by imperfect ego-motion compensation, and this type of error
should be filtered out using their temporal properties. There are
also persistent errors caused during data acquisition. Since the

camera positions are different when two consecutive images
are captured, it is inevitable that some information is newly
introduced to the current image I t or some information of the
previous image I t−1 is occluded in the image I t.

To deal with those errors, a probabilistic approach is
adopted. The normalized pixel values in the difference images
can be interpreted as the probability of the existence of moving
objects in that position, and the position and size of the moving
objects are estimated over time. This estimation process can
be modeled using a Bayesian formulation. Let x

t represent
the state (eg. the position and velocity) of a moving object.

x = [ x y ẋ ẏ ]
T (5)

The posterior probability distribution Pm(xt) of the state is
derived as follows.

Pm(xt) = P (xt|I0
d , I1

d , · · · , It
d)

= ηt P (It
d|x

t, I0
d · · · , It−1

d ) P (xt|I0
d · · · , It−1

d )

= ηt P (It
d|x

t) P (xt|I0
d · · · , It−1

d )

= ηt P (It
d|x

t)

∫

P (xt|I0
d · · · , It−1

d ,xt−1)

× P (xt−1|I0
d · · · , It−2

d ) dxt−1

= ηt P (It
d|x

t)

∫

P (xt|xt−1)

× P (xt−1|I0
d · · · , It−2

d ) dxt−1

= ηt P (It
d|x

t)

∫

P (xt|xt−1)Pm(xt−1) dxt−1

(6)

Now the posterior probability distribution can be updated
recursively by applying a perception model P (I t

d|x
t) and a

motion model P (xt|xt−1) over time.
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Algorithm 1: Frame Differencing with Ego-motion Compensation

Input: two consecutive images It−1 and It

Output: the difference image It
d and the ego-motion transformation

T t
t−1

begin1
select a salient feature set F t−1 from It−1 ;2
track the features on It, and generate the corresponding feature set3
F t ;
F ← < F t−1, F t > ;4
if |F | > the number of parameters in a transformation model then5

/* compute the initial estimate using the full feature set. */
construct an input matrix X using F t−1 ;6
construct a target vector t using F t ;7
T0 ←

`

XT X
´−1

XT t8

/* remove outliers from the feature set. */
Fin ← ∅ ;9
Fout ← ∅ ;10
foreach <f t−1, ft > in the set F do11

if |ft − T0(ft−1)| < ε then12
insert <f t−1, ft > into Fin;13

else14
insert <f t−1, ft > into Fout;15

end16
end17

/* compute the final estimate using the inliers only. */
construct an input matrix X using only F t−1

in ;18
construct a target vector t using only F t

in ;19
T t

t−1 ←
`

XT X
´−1

XT t20

/* compensate ego-motion. */
initialize Ic with all 0 ;21
forall (x, y) in the image Ic do22

Ic(x, y)← It−1
“

T t
t−1

−1
(x, y)

”

;23
end24

/* frame differencing with ego-motion compensation. */
It
d ← |I

t − Ic| ;25
else26

/* no compensation is feasible without sufficient features. */
T t

t−1 ← the identical transformation ;27
It
d ← |I

t − It−1| ;28
end29
return It

d and T t
t−130

end31

A. Bayesian Filter Design

The derived equation 6 shows how the sequence of dif-
ference images and the motion model of a moving object are
integrated into the state estimation process. However, there are
still three questions to answer: (1) how to define a perception
model, and (2) how to define a motion model, and finally
(3) how to represent the posterior probability distribution.

The perception model P (I t
d|x

t) captures the idea that if
there is a motion at position x

t, then the difference values of
the pixel in that position and its neighbors should be big. For
example, let us assume a small moving object that occupies a
single pixel p

t−1 on a camera image. When the object moves
to its neighbor pixel p

t, then the difference values of both
pixels p

t−1 and p
t would be big. This neighborhood can be

modeled using a multi-variate Gaussian, and the perception
model can be defined as

P (It
d |x

t) =

Z |It
d|

0

I
t
d(x)×

1
p

(2π)d|Σs|
e
− 1

2
(x−x

t)T Σ−1

s (x−x
t)

dx

(7)
when d is the dimension of the state x, and the covariance
matrix Σs controls the range of effective neighborhood.

Fig. 8. Bayesian filter tracking with piecewise constant representation: The
left window shows the input image and the detected moving object (ellipsoid),
and the right window shows the posterior probability distribution of the
moving object using a 10x10 pixel grid.

The motion model P (xt|xt−1) captures the best guess about
the motion of a moving object. Since no prior knowledge of
an object motion is assumed, a constant velocity model is a
natural choice. The uncertainty of an object motion is modeled
by the covariance matrix Σm of a multi-variate Gaussian.

µ =









xt−1 + ∆t × ẋt−1

yt−1 + ∆t × ẏt−1

ẋt−1

ẏt−1









(8)

P (xt |xt−1) =
1

√

(2π)d|Σm|
e−

1

2
(xt

−µ)T Σ−1

m (xt
−µ) (9)

The choice of a representation for the posterior probability
distribution is important for real-time system design because
the update equation (Equation 6) contains an integral operation
and the required computation is intensive. Even when the size
of a camera image is small, the state space is sizeable because
the state is four-dimensional. The most compact representation
is to use a single Gaussian, like the Kalman filter [26], [27],
but this approach is not appropriate because (1) the initial
state of a moving object is not given in priori, and (2) image
segmentation is avoided for real-time response, which makes
it hard to construct a measurement matrix.

A better approach is to use a piecewise constant represen-
tation. By decomposing the state space into an equally spaced
grid, the amount of computation can be reduced drastically.
For example, Figure 8 shows the position estimation result
using a 10x10 pixel grid. However, the computation was still
not efficient enough. In order to achieve a real-time response,
only the position of a moving object was estimated (x =
[x y]T ), and a constant position model, instead of a constant
velocity model, was utilized as the consequence of the simpler
state definition. In addition, the approximation quality of the
posterior probability distribution was sacrificed by using the
sparse representation.

The most popular representation that addresses these con-
cerns is a sample-based representation [28], [29]. The amount
of computation is reduced by using a small set of weighted
samples, but the approximation quality is well preserved
by concentrating samples on the area whose probability is
high. Also, the number of samples can change dynamically
depending on the shape of the posterior probability distribution
and available computer power. In this paper, we adopt the
sample-based representation.
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B. Particle Filter Design

The Particle filter [28], [29] is a simple but effective
algorithm to estimate the posterior probability distribution
recursively, which is appropriate for real-time applications.
In addition, its ability to perform multi-modal tracking is
attractive for unsegmented object detection and tracking from
camera images. An efficient variant, called the Adaptive Par-
ticle Filter, was introduced in [30]. This changes the number
of particles dynamically for a more efficient implementation.
We implemented the Adaptive Particle Filter to estimate the
posterior probability distribution in Equation 6. As described
in Section IV-A, particle filters also require two models for the
estimation process: a perception model and a motion model.

The perception model is used to evaluate a particle and
compute its weight (or importance). Equation 7 provides a
generic form of the perception model. However, the perception
model is simplified for efficiency. A step function is used
instead of a multi-variate Gaussian, and the evaluation range
is also limited to m × m fixed area. The m × m mask
should be big enough (usually 5 × 5) so that salt-and-pepper
noise is eliminated. The weight ωt

i of the ith particle (st
i =

[ xt
i yt

i ẋt
i ẏt

i ]T ) is computed by

ωt
i =

1

m2

m/2
∑

j=−m/2

m/2
∑

k=−m/2

Id

(

xt
i − j, yt

i − k
)

(10)

As shown in Equation 10, only the position information is
used to evaluate particles.

The motion model is used to propagate a newly drawn
particle according to the estimated motion of a moving object.
The motion model in and Equation 9 describes how to compute
the probability of the new state x

t when the previous state
x
t−1 is given. However, for particle filter update, the motion

model should describe how to draw a new particle st
i when the

previous particle st−1
i and its weight ωt

i are given. Therefore,
the motion model is defined as

st
i =











xt−1
i + ∆t × ẋt−1

i + Normal(
γp

ωt
i

)

yt−1
i + ∆t × ẏt−1

i + Normal(
γp

ωt
i

)

ẋt−1
i + Normal(γv

ωt
i

)

ẏt−1
i + Normal(γv

ωt
i

)











(11)

where ∆t is a time interval, and γp and γv are noise parameters
for position and velocity components respectively. The func-
tion Normal(σ) generate a Gaussian random variate with zero
mean and the standard deviation σ. As shown in Equation 11,
the parameterized noise is added to the constant-velocity
model in order to overcome an intrinsic limitation of the
particle filter, which is that all particles move in a convergence
direction. However, a dynamic mixture of divergence and
convergence is required to detect newly introduced moving
objects. [29] introduced a mixture model to solve this problem,
but in the image space the probability P (xt|It

d) is uniform and
the dual MCL becomes random. Therefore, we used a simpler,
but effective method by adding inverse-proportional noise.

As an implementation issue, a multi-dimensional kd-tree
is constructed during the particle filter update. This serves
two purposes: (1) to compute the proper number of particles

Fig. 9. Particle filter tracking: The position of particles are represented by
small dots, and the horizontal bar on the top-left corner shows the number of
particles being used.

[30], and (2) to cluster particles efficiently as described in
Section IV-C. In order to determine the proper number of
particles, a kd-tree with uniform-size nodes is built. When
the size of the tree is k, the error bound is ε, and the
confidence quantile is z1−δ, the proper number is computed
as follows [30].

n =
1

2ε
χ2

k−1,1−δ

.
=

k − 1

2ε

{

1 −
2

9(k − 1)
+

√

2

9(k − 1)
z1−δ

}3 (12)

Figure 9 shows the output of the particle filter. The dots
represent the position of particles, and the horizontal bar
on the top-left corner of the image shows the number of
particles being used. The final algorithm of the particle filter
is described in Algorithm 2.

C. Particle Clustering

The particle filter generates a set of weighted particles that
estimate the posterior probability distribution of a moving
object, but the particles are not easy to process in the following
step. More intuitive and meaningful data can be extracted by
clustering the particles. A density-based algorithm using a kd-
tree is introduced for efficient particle clustering. The main
idea is to convert a set of weighted particles into a lower-
resolution, uniform-sized grid. The grids can be represented
using a kd-tree efficiently, and all clustering operations are
performed using the grids instead of particles. Therefore, the
required computation is reduced drastically. However, since
each grid maintains enough information about the particles in
the grid, the statistics of each cluster can be calculated without
any accuracy loss. The algorithm consists of the following four
steps:

1) Tree Construction: Given a set of weighted particles, a
kd-tree representation is constructed. The state space is parti-
tioned into uniform-sized grid cells, and only non-empty cells
are maintained using a kd-tree. Since the Adaptive Particle
Filter requires the kd-tree for computing the proper number
of particles (as described in Section IV-B), this step can be
combined with the particle filter update. The information of
each particle is not necessary anymore for the subsequent
steps, but a few extra statistics of each terminal node in the
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Algorithm 2: Adaptive Particle Filter for Motion Tracking

Input: the previous particle set St−1, the difference image It
d, and the

ego-motion transformation T t
t−1

Output: a new particle set St and its kd-tree representation Kt

S0 ← a set of uniformly weighted, random particles with the size1
nmax ;
begin2

/* transform all particles to compensate an ego-motion */
foreach < st−1, ωt−1 > in St−1 do3

st−1 ← T t
t−1(st−1) ;4

end5

/* perform the standard particle filter update */
St ← ∅ ;6
Kt ← ∅ ;7
W ← 0 ;8
repeat9

/* draw a particle from St−1 according to its weight values */
C1 ← ωt−1

1 ;10
for i=2 to |St−1| do Ci ← Ci−1 + ωt−1

i ;11
generate a random number r in the range [0, 1) ;12
select the ith particle s′i from St−1 such that13
Ci ≤ r < Ci+1 ;

/* propagate the particle using the motion & sensor models */
ω′ ← 1

m2

Pm/2
j=−m/2

Pm/2
k=−m/2

It
d

`

x′
i − j, y′

i − k
´

;14

st ←

2

6

6

4

x′
i + ∆t× ẋ′

i + Normal(
γp

ω′
)

y′
i + ∆t× ẏ′

i + Normal(
γp

ω′
)

ẋ′
i + Normal( γv

ω′
)

ẏ′
i + Normal( γv

ω′
)

3

7

7

5

;

15

ωt ← 1
m2

Pm/2
j=−m/2

Pm/2
k=−m/2

It
d

`

xt − j, yt − k
´

;16

/* add the new particle */
add < st, ωt > to St ;17
add < st, ωt > to Kt ;18
W ←W + ωt ;19

until |St| < nmin20

or |St| <
|Kt|−1

2ε

n

1− 2
9(|Kt|−1)

+
q

2
9(|Kt |−1)

z1−δ

o3
;

/* normalize the weights of all particles */
if W > 0 then21

foreach < st, ωt > in St do ωt ← ωt/W ;22
else23

St ← a set of uniformly weighted, random particles with the24
size nmax ;

end25
return St and Kt26

end27

tree need to be computed. For each terminal node k, the weight
wk, the mean µk, and the covariance matrix Σk of the node
are calculated using the subset of particles that are associated
with the node.

wk =
∑

i wi

µk =
∑

i wisi /
∑

i wi

Σk =
∑

i wi(si − µ)(si − µ)T /
∑

i wi

(13)

2) Candidate Selection: Instead of re-constructing a pos-
terior probability distribution and thresholding the pdf, we
select candidate grid cells whose particle density is bigger
than a threshold θ. Since each particle has different weight,
the density should take the weight into account. Theoretically
this means wk/volume(k) should be used as the determinant.
However, the number of particles (nk/volume(k)) can be used
alternatively for simplicity assuming all particles have uniform
weights.

Fig. 10. Particle clustering: Two ellipsoids represent the means and
covariance of two particle clusters.

3) Grouping: Once the candidate nodes are selected, clus-
tering can be done by simply grouping the nodes by checking
connectivity among nodes. There are various known algo-
rithms for this task. The connectivity can be defined using
the distance between the mean vectors of two nodes, or can
be determined by checking if a node is a neighbor of another.

4) Statistics Computation: For each cluster, the statistics of
the particles in the cluster can be calculated by summing the
statistics of the nodes in the cluster incrementally.

µ′ = w µ+wk µk

w+wk

Σ =
w{Σ+(µ′

−µ)(µ′
−µ)T}+wk{Σk+(µ′

−µk)(µ′
−µk)T}

w+wk

w = w + wk

µ = µ′

(14)
Figure 10 shows the output of the particle clustering al-

gorithm. The dots represent the position of particles, and the
ellipsoid represents the mean and covariance of each cluster.
The full description of the clustering algorithm is in Table 3.

D. Multiple Particle Filters for Multiple Motion Tracking

The particle filter has many advantages as described in [31],
[29]; one of the advantages is multi-modality. This property
is attractive for multi-target tracking because it raises the
possibility that a single set of particles can track multiple
objects in an image sequence. However, that is true only under
two conditions:

1) The perception model should be “bad” enough so that
particles converge slowly, and eventually stay on mul-
tiple objects. For example, imagine the case in which
there are two moving objects in the image sequence.
It is desired that a single set of particles is split into
two groups, and each group converges to and track each
objects continuously. Apparently a set of particles would
behave as desired if two objects show exactly the same
amount of motions (on average over time) in the image
sequence. However, this assumption is not realistic. In
most cases, one would show a “bigger” motion than
the other due to different size and shape of an object,
different distance to a camera, etc. The behavior of
particles is quite different without the assumption. Since
the amount of motion is different, the perception model
P (It

d|x
t) in Equation 6 generates a different value for
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Algorithm 3: Particle Clustering for Post-processing
Input: the kd-tree representation K of a particle set
Output: m Gaussians (< µ1, Σ1 >, · · · ,< µm,Σm >)

begin1
/* select a set of candidate nodes C based on their density */
C ← ∅ ;2
forall a terminal node k in K do3

the particles in the node k are4
< s1, w1 >,< s2, w2 >, · · · ,< sn, wn > ;
if

P

i wi / volume(k) ≥ θ /* thresholding by weighted5
density */

then6
/* these statistics can be computed when the tree is built */
wk ←

P

i wi ;7
µk ←

P

i wisi /
P

i wi ;8
Σk ←

P

i wi(si − µ)(si − µ)T /
P

i wi ;9
add < wk, µk , Σk > to C ;10

end11
end12
/* group the candidate nodes using connectivity */
for i = 1 to |C| do13

if ci /∈ any group then create a new group Gi ;14
for j = i + 1 to |C| do15

if cj /∈ any group then16
if |µi − µj | ≤ ρ then add cj to the group Gi17

else if Gi 6= Gj and |µi − µj | ≤ ρ then18
combine the group Gi and the group Gj ;19

end20
end21

end22
/* compute the statistics of each group */
foreach a group Gi do23

wi ← 0 ;24
µi ← 0 ;25
Σi ← 0 ;26
forall a candidate < wk, µk , Σk > in Gi do27

µ′ ← wi µi+wk µk

wi+wk
;28

Σi ←29
wi{Σi+(µ′−µi)(µ

′−µi)
T }+wk{Σk+(µ′−µk)(µ′−µk)T}
wi+wk;

wi ← wi + wk ;30
µi ← µ′31

end32
end33

end34
return < µ1,Σ1 >, · · · ,< µm,Σm >35

each object. As a result, particles on the smaller motion
would shift to the bigger motion after some iterations
even when the size of the two particle groups was the
same in the beginning. This behavior is expected because
Equation 6 is designed to estimate the position of a
single object x. This limitation can be overcome in
two ad-hoc ways: (1) By making the perception model
less sensitive so that particles converge very slowly,
(2) By increasing the number of particles. The first
technique is feasible when the convergence speed is not
important [32], [29]. However, convergence speed is a
critical factor for motion tracking. When a new object is
introduced, a filter should be able to detect it and start
to track it in a reasonable time. The second technique is
not desirable since the required computation increases
drastically.

2) All objects should be introduced in the beginning of
estimation process. As explained in Section IV-A, par-
ticles shows a convergence tendency, and consequently

(a) single person at t = 23 (b) three people at t = 109

Fig. 11. Problem of a single particle filter: (a) shows that the particle filter
converges on the person, and (b) shows that the filter stays on the person
continuously even when other people are introduced in the image later.

converged particles do not diverge unless the tracked
object disappears. For example, Figure 11 shows a
problematic scenario. The particle set converges when
the person enters into the field of view of the camera
as in Figure 11 (a), and it concentrates on the person
continuously even when two more people enter later as
in Figure 11 (b). This problem is not trivial to solve
using a limited number of particles.

Therefore, we introduce a tracking system using multiple
particle filters. The main idea is to maintain an extra particle
filter for a newly introduced or detected object. Since the
number of objects is not known in priori, particle filters should
be created and destroyed dynamically. Whenever the extra
particle filter converges on a newly detected object, a new
particle filter is created (as long as the number of particle
filters is smaller than the maximum limit Nmax). Similarly,
whenever a particle filter diverges due to the disappearance
of a tracked object, it is destroyed. In order to prevent two
particle filters from converging on the same object, whenever
a particle filter is updated, the difference image is modified
for subsequent processing such that difference values covered
by the filter are cleared. The detailed algorithm is described
in Algorithm 4.

V. POSITION ESTIMATION IN 3D SPACE

A monocular image provides rich information for ego-
motion compensation and motion tracking in 2D image space.
However, a single camera has limits on retrieving depth
information, and an additional sensor is required to construct
3D models of moving objects. Our robots are equipped with a
laser rangefinder, which provides depth information within a
singe plane. Given the optical properties of a camera and the
transformation between the camera and the laser rangefinder,
distance information from the laser rangefinder can be pro-
jected onto the image coordinates (Figure 12).

Given the heading α and the range r of a scan, the projected
position (x, y) in the image coordinate system is computed as
follows:

[

x
y

]

=





w
2 ×

(

1 − tan(α)
tan(fh)

)

h
2 ×

(

1 +
(

d − d
r × (r − l)

)

× 1
l×tan(fv)

)





(15)
where the focal length of the camera is l, the horizontal
and vertical field of view of the camera are fh and fv, the
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Algorithm 4: Multiple Particle Filters for Multiple Motion Tracking

Input: the previous particle filter set P t−1, the difference image It
d,

and the ego-motion transformation T t
t−1

Output: a new particle filter set P t

create a particle filter p0 ;1
P 0 ← {p0} ;2
begin3

/* update all particle filters in the set */
P t ← ∅ ;4
Id ← It

d ;5
foreach a particle filter pi in P t−1 do6

update the particle filter pi using the difference image Id ;7
retrieve the cluster information Ci from the updated particle8
filter pi ;
if |Ci| > 0 /* check the convergence */9
then10

P t ← P t ∪ {pi} ;11
P t−1 ← P t−1 − {pi} ;12
forall a cluster < µj ,Σj > in Ci do13

Id ← Id − region(µj , Σj) ;14
end15

end16
end17

/* add an extra particle filter if allowed */
if |P t−1| > 0 then18

select a particle filter p′ from P t−1 ;19
reset the particle filter p′ ;20
P t ← P t ∪ {pi} ;21
P t−1 ← P t−1 − {pi} ;22

else23
if |P t| < Nmax then24

create a new particle filter p′ ;25
P t ← P t ∪ {pi} ;26

end27
end28

/* destroy unused particle filters */
forall a particle filter pi in P t−1 do29

destroy the particle filter pi ;30
end31

end32
return P t33

height from the laser rangefinder to the camera is d, and the
image size is w × h. This projection model assumes a very
simple camera model (a pin-hole camera) for fast computation.
As a result of the projection, the image pixels at the same
height as the laser rangefinder will have depth information
as shown in Figure 13. For ground robots, this partial 3D
information can be enough for safe navigation assuming all
moving obstacles are on the the same plane as the robot. In
terms of moving object tracking, if the region of a moving
objects in image space and those pixels are overlapped, then
the distance between a robot and the moving object can be
estimated.

This naive integration of the 2D motion estimates and
range scans from a laser rangefinder is a reasonable practical
solution. However, using two separate sensors requires another
estimation problem potentially, which is the fusion of multiple
asynchronous inputs. A preferred route (not investigated here)
would be to use stereo vision for depth information retrieval.
If computational power allows one can exploit the facts that
stereo (1) provides full depth information of an image space,
and (2) a single input source provides synchronous data and
better fusion result can be expected.

Fig. 12. Projection of laser scans onto the image coordinates: The range
scans from a laser rangefinder can be projected onto the image coordinate
system based on the optical properties of a camera and the transformation
between the camera and the laser rangefinder.

Fig. 13. Projected laser scans: The image pixels at the same height as the
laser rangefinder have depth information.

VI. EXPERIMENTAL RESULTS AND DISCUSSION

The proposed motion tracking system was tested in various
scenarios. First, the robustness of ego-motion compensation
and motion tracking algorithms was tested using three different
robot platforms. The performance is analyzed in Section VI-
A. Second, the multiple-motion tracking system described in
Section IV-D was tested using various scenarios. The results
are presented in Section VI-B. Finally, the tracking system
was integrated with an actual robot control system. The result
is discussed in Section VI-C.

A. Tracking a Moving Object from Various Platforms

The ego-motion of a mobile robot is diverse according to its
actuator design and the way the camera is mounted on the plat-
form. For example, a down-facing camera mounted on an UAV
(Unmaned Aerial Vehicle) would show a different ego-motion
from a forward-facing camera mounted on a walking robot. In
addition, the complexity of the ego-motion increases through
the interaction with rough terrain. The tracking performance
is also affected by the distribution of occlusive obstacles in
an environment. Therefore, the ego-motion compensation and
the motion tracking algorithms should be tested on various
environments with a wide variety of mobile platforms.

1) Experimental Setup: The tracking algorithms were im-
plemented and tested in various outdoor environments using
three different robot platforms: robotic helicopter, Segway
RMP, and Pioneer2 AT. Each platform has unique character-
istics in terms of its ego-motion.

The Robotic Helicopter [33] in Figure 14 (a) is an au-
tonomous flying vehicle carrying a monocular camera facing
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(a) Robotic Helicopter (b) Segway RMP (c) Pioneer2 AT

Fig. 14. Robot platforms for experiments: Each platform has unique characteristics in terms of its ego-motion.

downward. Once it takes off and hovers, planar movements are
the main motion, and moving objects on the ground stay at a
roughly constant distance from the camera most of the time;
however, pitch and roll motions still generate complicate video
sequences. Also, high-frequency vibration of the engine adds
motion-blur to camera images.

The Segway RMP in Figure 14 (b) is a two-wheeled,
dynamically stable robot with self-balancing capability. It
works like an inverted pendulum; the wheels are driven in
the direction that the upper part of the robot is falling, which
means the robot body pitches whenever it moves. Especially
when the robot accelerates or decelerates, the pitch angle
increases by a significant amount. Since all sensors are directly
mounted on the platform, the pitch motions prevent direct
image processing. Therefore, the ego-motion compensation
step should be able to cope with not only planar movements
but also pitch motions.

The Pioneer2 AT in Figure 14 (c) is a typical four-wheeled,
statically stable robot. Since the Pioneer2 robot is the only stat-
ically stable platform among these robot platforms, we drove
the robot on the most severe test environment. Figure 17 shows
the rocky terrain where the robot was driven. In addition, the
moving objects were occluded occasionally because of the
trees in the environment.

The computation was performed on embedded computers
(Pentium III 1.0 GHz) on the robots. Low resolution (320x240
pixels) input images were chosen for real-time response. The
maximum number of particles was set to 5,000, and the
minimum number of particles was set to 1000. Since the
algorithm is supposed to run in parallel with other processes
(eg. navigation and communication), less than 70 percent
of the CPU time was dedicated for tracking; the tracking
algorithm was able to process five frames per second.

2) Experimental Results: The performance of the tracking
algorithm was evaluated by comparing with the positions
of manually tracked objects. For each video sequence, the
rectangular region of moving objects were marked manually
and used as ground truth. Figure 15–17 show this evaluation
process. The upper rows show the input image sequence, and
the positions of manually-tracked objects are marked with
rectangles. The lower rows show the set of particles and the
clustering results. The position of each particle is marked with
dots, and the horizontal bar on the top-left corner of the image
indicates the number of particles being used. The clustering
result is represented using an ellipsoid and a line inside. The
ellipsoid shows the mean and covariance of the estimated

object position, and the line inside of the ellipsoid represents
the estimated velocity vector of the object.

The final evaluation result is shown in Table I. Frames
is the number of image frames in a video sequence, and
Motions is the number of moving objects. Detected is the
total number of detected objects, and True + and False +
are the number of correct detections and the number of false-
positives respectively. Detection Rate shows the percentage
of moving objects correctly detected, and Avg. Error is the
average Euclidean distance in pixels between the ground truth
and the output of tracking algorithm. The average distance
error should not be considered as actual error measurement
since the tracking algorithm does not perform an explicit
object segmentation; it may track a part of an object that
generates motion while the ground truth always tracks the
whole objects even though only part of the object moves.

The Robotic helicopter result shows that the tracking al-
gorithm missed seven objects, but five of them were the
cases when a moving object was introduced and showed only
partially on the boundary of the image plane. Once the whole
object entered into the field of view of the camera, the tracking
algorithm tracked it robustly. For the Segway RMP result, the
detection rate was satisfactory, but the average distance error
was larger than the others. The reason was that the walking
person was closer to the robot and the tracking algorithm often
detected the upper body only, which caused a constant distance
error. The Pioneer2 AT result shows the higher ratio of false-
positives; however, as explained in the previous section, the
terrain for the experiment was more challenging (rocky) and
the input images were more blurred and unstable. Overall
various types of ego-motions were successfully eliminated
from input images, and the particle filter was able to track
motions robustly from diverse robot platforms.

B. Tracking Multiple Moving Objects

The multiple-motion tracking system using multiple particle
filters was introduced in Section IV-D. Since the robustness of
an individual filter was analyzed in Section VI-A, we focus
on analyzing how multiple filters are created and destroyed
effectively when the number of moving objects changes dy-
namically.

1) Experimental Setup: The Segway RMP in Figure 14 (b)
was selected for the experiment because of its complex ego-
motion. The Segway RMP is a dynamically stable platform,
and its pitching motions for self-balancing are combined into
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(a) t = 13 (b) t = 21 (c) t = 34

(d) t = 13 (e) t = 21 (f) t = 34

Fig. 15. Moving object tracking from Robotic helicopter: The upper row shows the input image sequence with manually-tracked objects, and the lower row
shows the particle filter outputs and clustering results.

(a) t = 57 (b) t = 119 (c) t = 195

(d) t = 57 (e) t = 119 (f) t = 195

Fig. 16. Moving object tracking from Segway RMP: The upper row shows the input image sequence with manually-tracked objects, and the lower row
shows the particle filter outputs and clustering results.

TABLE I
PERFORMANCE OF MOVING OBJECT DETECTION ALGORITHM

Platform Frames Motions Detected True + False + Detection Rate Avg. Error

Robotic helicopter 43 35 28 28 0 80.00 % 11.90
Segway RMP 230 220 215 211 4 95.90 % 21.31
Pioneer2 AT 195 172 158 146 12 84.88 % 15.87
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(a) t = 35 (b) t = 56 (c) t = 191

(d) t = 35 (e) t = 56 (f) t = 191

Fig. 17. Moving object tracking from Pioneer2 AT: The upper row shows the input image sequence with manually-tracked objects, and the lower row shows
the particle filter outputs and clustering results.

linear and angular motions. The combination of these motions
causes complicated ego-motions even when the robot is driven
on a flat terrain or when the robot stops in place. The robot was
driven on the USC campus during the daytime when there are
diverse activities in the environment including walking people
and automobiles.

The tracking performance is analyzed for three different
cases. As explained in Section IV-D, if one of the following
two conditions is not satisfied, a single particle filter fails to
track multiple objects even though it supports multi-modality
in theory: (1) all objects should be introduced before a particle
filter converges, and (2) the convergence speed of a particle
filter should be sacrificed by using a “bad” perception model.
The first two cases are when one or both conditions can not
be satisfied. In the first case, there are three people walking
by, but the people are introduced in the input image sequence
one by one, which violates the first condition. In the second
case, there are two groups of automobiles passing by, and
they are introduced sequentially with a big time interval
between them. In addition, the automobiles move fast enough
so that the convergence speed of a particle filter cannot be
sacrificed, which violates the second condition. The results
for both cases show how the multiple particle filter approach
overcomes the limitation of a single particle filter. The stability
of this approach is also clear. In the last case, it is observed
how multiple particle filters behave when two people walk in
different directions and intersect in the middle.

The computation was performed on a Pentium IV (2.1 GHz)
computer, and the image resolution was fixed to 320x240
pixels. The maximum number of particle filters was fixed
to five, and for an individual particle filter, the range of the
number of particles was set to (1000 ∼ 5000). The number

of frames processed per second varies based on how many
particle filters have been created, but roughly 10 frames were
able to be processed.

2) Experimental Results: The snapshots of the multiple
particle filter tracking multiple moving objects are shown in
Figure 18–20. The upper rows of the figures show input image
sequences and manually-tracked moving objects in the images.
The manually-tracked objects are marked with rectangles. The
lower rows show particle filters and the covered area (the
minimum rectangular region enclosing each ellipsoid that is
generated by the particle clustering algorithm) by each particle
filter. Only converged particle filter is visualized on the images.
Each particle filter is drawn with different colored dots, and
the covered areas are marked with rectangles.

The experimental result of the first case is shown in Fig-
ure 18. The estimation process starts with a single particle
filter. When the first person enters into the field of view of
the camera as in Figure 18 (a), the particle filter converges
and starts to track the person as in Figure 18 (d), and a new
particle filter is created to explore the remained area. When
the second person enters as in Figure 18 (b), the new particle
filter converges and starts to track the second person as in
Figure 18 (e), and another particle filter is created. This process
is repeated whenever a new object is introduced. At the end
when three people are in the input image as in Figure 18 (c),
the total number of particle filters becomes four; three filters
for people and one extra filter to explore.

Figure 19 shows the experimental result of the second case.
The estimation process is performed in the same way with the
first case. Whenever a new automobile is introduced, a new
particle filter is created. When the automobile leaves from the
field of view of the camera, the particle filter that tracks the
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(a) t = 49 (b) t = 95 (c) t = 132

(d) t = 49 (e) t = 95 (f) t = 132

Fig. 18. Tracking people: There are three people walking by. The upper row shows the input image sequence with manually-tracked objects, and the lower
row shows the particle filter outputs and clustering results.

(a) t = 51 (b) t = 66 (c) t = 85

(d) t = 51 (e) t = 66 (f) t = 85

Fig. 19. Tracking automobiles: There are two cars passing by followed by a third car. The upper row shows the input image sequence with manually-tracked
objects, and the lower row shows the particle filter outputs and clustering results.

TABLE II
PERFORMANCE OF MOVING OBJECT DETECTION ALGORITHM

Case Frames Motions Detected True + False + Detection Rate Avg. Error

(1) Pedestrians 141 285 274 274 0 96.14 % 8.68
(2) Automobiles 123 120 95 92 3 76.67 % 20.40
(3) Intersection 81 162 156 156 0 96.30 % 12.34
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(a) t = 27 (b) t = 38 (c) t = 67

(d) t = 27 (e) t = 38 (f) t = 67

Fig. 20. Intersectional particles: There are two people intersecting in the image. The upper row shows the input image sequence with manually-tracked
objects, and the lower row shows the particle filter outputs and clustering results.

automobile diverges and is destroyed eventually.
The experimental result of the third case is shown in

Figure 20. There are two people walking in different directions
as in Figure 20 (a), and two particle filters are created to
track them individually as in Figure 20 (d). The pedestrians
intersect in the middle, and keep walking in each direction.
Figure 20 (e) and (f) demonstrate that the particle filters track
them successfully without being confused by the intersection.

The detailed evaluation result is shown in Table II. There
were untracked motions in common; however, it happens only
right after a new object is introduced and before a filter
converges on the object. Once a particle filter converges and is
associated with the object, it never fails to track the object. For
the second case, the detection rate is lower than the other two
cases. This is reasonable since the motion of an automobile
is much faster than that of a person, and it took longer for a
particle filter to converge on it. The false-positives observed in
the second case are also related to the faster motion. When an
automobile leaves from the camera field of view, it disappears
quickly enough so that the particle filter stays converged for
one or two frames. In general, the multiple particle filter
approach shows stable performance for all cases.

C. Close the loop: Following a Moving Object

The proposed tracking system is integrated with a robot
control loop, and its robustness and real-time capability are
tested. For this experiment, the task of a robot is to wait for
a moving object to appear and follow the object.

1) System Design and Implementation: A robot needs
two capabilities to accomplish the task: motion detection
and tracking, and local navigation. For motion detection and
tracking, the system described in Section III-V is utilized. This

Fig. 21. Control architecture for motion following system: The “motion
tracker” box represents the proposed motion tracking system.

module takes the sequence of camera images and the laser
range scans as inputs, and computes the existence of moving
object(s) and the estimation of target positions in the robot’s
local coordinates. For local navigation, VFH+ (Vector Field
Histogram +) [34] algorithm is implemented. Internally, VFH+
algorithm performs two tasks: (1) it retrieves range scans
from a laser rangefinder, and build a local occupancy grid
map for obstacle avoidance, and (2) when the estimated target
position is given, the algorithm generates both translational
and rotational motor commands for point-to-point navigation.

The system architecture is presented in Figure 21. The
implemented system was deployed on a Segway RMP robot.
The computation was performed on an embedded computer
(Athlon 1.0 GHz) on the robot, and the image resolution was
fixed at 320x240 pixels.

2) Experimental Result: The snapshots of the robot fol-
lowing a person are shown in Figure 22. When the person
entered into the field of view of the camera as in Figure 22 (a),
the particle filter converged on him, and the Segway started
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to follow it. As shown in Figure 22 (b)-(e) and (h)-(i), there
were automobiles, a golf car, and pedestrians passing by in the
background. However, the tracking system was not confused
by them; the Segway was able to track the person without
a single failure. When the person stopped and stood still as
in Figure 22 (l), the particle filter diverged, which made the
robot stop. However, when the person re-started to walk as in
Figure 22 (m), the particle filter was able to detect the motion
again, and the robot re-started to follow the person.

VII. CONCLUSION

We have presented a set of algorithms for multiple motion
tracking from a mobile robot in real-time. There are three
challenges: 1) Compensation for the robot ego-motion: The
ego-motion of the robot was directly measured using corre-
sponding feature sets in two consecutive images obtained from
a camera rigidly attached to the robot. In order to eliminate
the unfavorable effect of a moving object in the image se-
quence, an outlier detection algorithm has been proposed. 2)
Transient and structural noise: An adaptive particle filter has
been designed for robust motion tracking. The position and
velocity of a moving object were estimated by combining
the perception model and the motion model incrementally.
Also, the multiple target tracking system has been designed
using multiple particle filters. 3) Sensor fusion: The depth
information from a laser rangefinder was projected into the
image space, and the partial 3D position information was
constructed in the region of overlap between the range data
and the image data.

The proposed algorithms have been tested with various
configurations in outdoor environments. First, the algorithms
were deployed on three different platforms (Robotic Heli-
copter, Segway RMP, and Pioneer2 AT), and tested in different
environments. The experimental results showed that various
type of ego-motions were successfully eliminated from input
images, and the particle filter was able to track motions
robustly. Second, the multiple target tracking algorithm was
tested for different types of motions. The experimental results
show that multiple particle filters are created and destroyed
dynamically to track multiple targets introduced at different
times. Lastly, the tracking algorithm was integrated with a
robot control loop to test its real-time capability, and the task
of following a moving object was successfully accomplished.

The proposed algorithms are expected to be utilized in
various application domains as a key enabler. Localization and
mapping problems have been studied actively by the mobile
robotics community, and there are many well-developed tech-
niques widely used. However, most techniques assume a static
environment, and their performance is degraded significantly
when there are dynamic objects in an environment. Our algo-
rithm provides a robust method to detect dynamic objects in an
environment, and it can be exploited in a pre-processing step
to filter out data that are associated with the dynamic objects.
Safe navigation is another fundamental problem in mobile
robotics, and most solutions generate motion commands based
on local positions of obstacles. However, those solutions
become unreliable when obstacles are dynamic, especially

when the obstacles move faster than the robot. In this case, a
mobile robot needs to predict obstacle position in the near
future to avoid collision. The motion velocity (speed and
direction) estimation capability of our algorithm could fulfill
this requirement. Human-robot interaction is active research
area in service robot applications, and locating a subject to
interact with is a key problem. Our algorithm is applicable
in this regard. Needless to say, surveillance and security
applications could make use of our algorithms to detect and
track moving targets.
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Fig. 22. Snapshots of a Segway RMP robot following a person



TECHNICAL REPORT CRES-05-008, CENTER FOR ROBOTICS AND EMBEDDED SYSTEMS, UNIVERSITY OF SOUTHERN CALIFORNIA 18

[15] M. B. van Leeuwen and F. C. Groen, “Motion interpretation for in-car
vision systems,” in Proceedings of the IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, EPFL, Lausanne, Switzerland,
October 2002, pp. 135–140.
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